Spocanian Archives

NUMERALS AND ARITHMETIC
Back to
Languages | Dialects
 
This file
1. Survey of numerals
2. Arithmetic in Spocanian
 
 

1. Survey of numerals

In Spocanian, two numeral systems are used:

  1. The classic system is based on the "sacred" numbers erg (14) and rn (36). In this system there are special numbers up to 14, while 15 beschouwd is "14+1" or erg-r, and 16 is "14+2" or erg-ten, etcetera.
    Furthermore, the following two numerals are also derived from erg: heferg (in fact "holfe-erg" or "half-erg", being 7) and tenerg (or "two times erg i.e. 28), while tenrn is derived from rn ("two times rn" i.e. 72). The remaining numerals are based on either 14 or 36, and the way in which this is done can be seen in the list below.

  2. The numerical system is based on (more or less) regularly formed decimals, entirely analogous to languages like English, Swedish or Spanish. Here, regularity is carried to such an extent that even numbers like 11 en 12 are compounded of 10+1 en 10+2 (cf. 13=10+3, etcetera). But the "classic" numerals ln (11), tesen (12), rsen (13) and erg (14) are so generally used that they are also found in the numerical system.

Spocanian does not have a word for "one thousand" (1000), but uses the compounded main-prsa (10x100) for this. However, there is in fact a word for 10,000, i.e. plr.
As regards the rest, see the list below.

The classic system is used in colloquial speech when referring to numbers and doing simple sums. For more complex calculations, one preferably uses the numerical system. In a scientific and a financial situation, one nowadays always prefers the numerical system, also in referring to simple numbers.


In the list below, numerals marked with an asterisk (*) are necessarily singular.

 ClassicNumerical
0nf, *zer*zer
1*rr
2ten, perdrten
3durdur
4frfr
5vr, *hentvr
6serssers
7*hefergheferg
8ke, nalake
9nynnyn
10main, tenhentmain
11lnmain-r, ln
12tesenmain-ten, tesen
13rsenmain-dur, rsen
14*ergmain-fr, erg
15erg-rmain-vr
16erg-tenmain-sers
17erg-durmain-heferg
18erg-frmain-ke
19erg-vr, erg-hentmain-nyn
20erg-serstensa
21erg-heferg, sekktensa-r
22erg-ke, erg-nalatensa-ten
23erg-nyntensa-dur
24erg-maintensa-fr
25erg-lntensa-vr
26erg-tesentensa-sers
27erg-rsentensa-heferg
28tenergtensa-ke
29tenerg-rtensa-nyn
30tenerg-tendursa
31tenerg-durdursa-r
32tenerg-frdursa-ten
33tenerg-vr, tenerg-hentdursa-dur
34tenerg-sersdursa-fr
35tenerg-hefergdursa-vr
36*rndursa-sers
37rn-rdursa-heferg
38rn-tendursa-ke
39rn-durdursa-nyn
40rn-frfrsa
41rn-vr, rn-hentfrsa-r
42rn-sersfrsa-ten
43rn-hefergfrsa-dur
44rn-ke, rn-nalafrsa-fr
45rn-nynfrsa-vr
46rn-mainfrsa-sers
47rn-lnfrsa-heferg
48rn-tesenfrsa-ke
49rn-rsenfrsa-nyn
50rn-erg, main-hentvrsa
51main-hent-rvrsa-r
52main-hent-tenvrsa-ten
53main-hent-durvrsa-dur
54main-hent-frvrsa-fr
55main-hent-vrvrsa-vr
56main-hent-sersvrsa-sers
57main-hent-hefergvrsa-heferg
58main-hent-kevrsa-ke
59main-hent-nynvrsa-nyn
60main-hent-mainsersa
61main-hent-lnsersa-r
62main-hent-tesensersa-ten
63main-hent-rsensersa-dur
64main-hent-ergsersa-fr
65rn-tenerg-rsersa-vr
66rn-tenerg-tensersa-sers
67rn-tenerg-dursersa-heferg
68rn-tenerg-frsersa-ke
69rn-tenerg-vrsersa-nyn
70rn-tenerg-sershefergsa
71rn-tenerg-heferghefergsa-r
72rn-tenerg-ke, tenrnhefergsa-ten
73rn-tenerg-nyn, tenrn-rhefergsa-dur
74rn-tenerg-main, tenrn-tenhefergsa-fr
75rn-tenerg-ln, tenrn-durhefergsa-vr
76rn-tenerg-tesen, tenrn-frhefergsa-sers
77rn-tenerg-rsen,
tenrn-vr, tenrn-hent
hefergsa-heferg
78tenrn-sershefergsa-ke
79tenrn-heferghefergsa-nyn
80tenrn-ke, tenrn-nalaksta
81tenrn-nynksta-r
82tenrn-mainksta-ten
83tenrn-lnksta-dur
84tenrn-tesenksta-fr
85tenrn-rsenksta-vr
86tenrn-ergksta-sers
87tenrn-erg-rksta-heferg
88tenrn-erg-tenksta-ke
89tenrn-erg-durksta-nyn
90tenrn-erg-frnynsa
91tenrn-erg-vr,
tenrn-erg-hent
nynsa-r
92tenrn-erg-sersnynsa-ten
93tenrn-erg-hefergnynsa-dur
94tenrn-erg-ke,
tenrn-erg-nala
nynsa-fr
95tenrn-erg-nynnynsa-vr
96tenrn-erg-mainnynsa-sers
97tenrn-erg-lnnynsa-heferg
98tenrn-erg-tesennynsa-ke
99tenrn-erg-rsennynsa-nyn
100tenrn-tenerg, prsaprsa
101prsa-rprsa-r
186prsa-tenrn-ergprsa-ksta-sers
   
200ten-prsaten-prsa
300dur-prsadur-prsa
   
934nyn-prsa-tenerg-sers 
1,000main-prsamain-prsa
1,671main-sers-prsa-hefergsa-r 
6,493sersa-fr-prsa-nynsa-dur 
8,700tenrn-erg-r-prsa 
9,971tenrn-erg-rsen-prsa-tenerg- 
heferg
 
10,000plrplr
24,792ten-plr-frsa-heferg-prsa-
nynsa-ten
 
30,000dur-plr 
50,892hent-plr-ke-prsa-tenrn-
erg-sers
 
85,396ke-plr-main-hent-dur-prsa-
tenrn-erg-main
 
100,000lkilki
131,305lki-dur-plr-main- 
dur-prsa-vr
400,000fr-lkifr-lki
560,000hent-lki-sers-plrvr-lki-sers-plr
1,000,000melnmeln
 45,000,000 rn-nyn-melnfrsa-vr-meln
   
70,895,129 rn-tenerg-sers-meln-ke-lki-nyn-plr-main-
hent-r-prsa-tenerg-r

Instead of a dot between hundreds (like in Dutch), one formerly used to put a dot between thousands (in Spocanian multiples of one hundred) as well as after hundreds of thousands. The way the dots split up the numbers corresponds with how they are pronounced, but nowadays this is replaced more and more by the international system (however, dots are used in stead of commas, the latter typically being the Anglo-Saxon custom).


2. Arithmetic in Spocanian

Ordinal numbers are the numbers followed by the suffix -tef: durtef (third), maintef (tenth), ksta-serstef (86th), tenrn-erg-rsentef (99th), etcetera. Exception: in ke (8) the final e is dropped when -tef is added: ktef (eighth).
In numbers written with figures, -tef is abbreviated as f: 1f (1st), 10f (10th), 92f (92nd), etcetera.

Fractions are expressed with the preposition mip (from; out of), followed by an ordinal number, e.g.: dur mip hefergtef (three-seventh), r mip prsatef (one-hundredth). In stead of r mip tentef (one-second), the word eft holfe (a half) is used. And in stead of r mip frtef (one-fourth) and dur mip frtef (three-fourth), the forms r korter (one quarter) and dur korters (three quarters) are preferred.

Arithmetic operations are expressed as follows (expressions according to the numerical system are highlighted in green):

3+2=5dur sp perdr kette hent
dur sp ten kette vr
three plus two equals five
162=14erg-ten les perdr kette erg
main-sers les ten kette main-fr
sixteen minus two equals fourteen
68=48sers tuf ke kette rn-tesen
sers tuf ke kette frsa-ke
six times eight equals forty-eight
 13:2=6 rsen part ten kette sers ur holfe
main-dur part ten kette sers ur holfe
thirteen divided by two equals six and a half 
23=8ten helkara [hogoritos] dur kette ke two to the power of three equals eight
52=25vr helkara cadrat kette erg-ln
vr helkara cadrat kette tensa-vr
five squared equals twenty-five
√16=4ef ricinor erg-ten kette fr
ef ricinor main-sers kette fr
the [square] root of sixteen equals four
(literally: "the rooted sixteen gives four")
∛27=3ef durtef ricinor erg-rsen kette dur
ef durtef ricinor tensa-heferg kette dur
the cube root of twenty-seven equals
three
∜256=4ef frtef ricinor ten-prsa-main-hent-sers kette fr 
ef frtef ricinor ten-prsa-vrsa-sers kette fr
the fourth root of two hundred fifty-six
equals four

 

© De Twee Hanen v.o.f. Kimswerd The Netherlands

DA 77-101082 SPARC 04 Apr 1991